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 The aim of this paper is to establish new bounds on Poisson approxima-

tion for random sums of independent negative-binomial random varia-

bles. The bounds showed in current paper are a uniform bound and a 

non-uniform bound. The received results in this paper are extensions and 

generalizations of known results. 
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1 INTRODUCTION 

In recent times, Poisson approximation problem for 

random sums of discrete random variables has at-

tracted the attention of mathematicians. Several 

interesting results can be found in Yannaros 

(1991), Vellaisamy and Upadhye (2009), 

Kongudomthrap and Chaidee (2012), Teerapabo-

larn (2013a), Teerapabolarn (2014), Tran Loc 

Hung and Le Truong Giang (2014), Tran Loc Hung 

and Le Truong Giang (2016a, 2016b), and Le Tru-

ong Giang and Trinh Huu Nghiem (2017). 

Let , ,1 2X X  be a sequence of independent nega-

tive-binomial random variables with probabilities 
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 be a Poisson random vari-

able with mean  
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In addition, throughout this paper, dTV  is denoted 

a probability distance of total variation, defined by 

( ) ( ) ( ), sup ,d X Y P X A P Y ATV
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where .A +  
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A uniform bound and a non-uniform bound for the 

distance between the distribution functions of nW   

and 
n

U
were presented in Tran Loc Hung and Le 

Truong Giang (2016a) as follows: 
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where : {0,1,2, }.0w  = +  

Consider the sum 
1

N
W XN i

i

= 
=

, where N  is a non-

negative integer valued random variable and inde-

pendent of the Xi 's. The sum is called random 

sums of independent negative -binomial random 

variables. Let U  be a Poisson random variable 

with ( )E N = , where ( )1

1

N
r pN i i

i

 = −
=

. 

Teerapabolarn (2014) gave a uniform bound for the 

distance between the distribution functions of WN  

and U  as follows: 
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In this paper, some of the bounds on Poisson ap-

proximation for random sums of independent nega-

tive-binomial random variables with mean 

( )E N = , where ( ) 11

1

N
r p pN i i i

i

 −= −
=

, are present-

ed in Section 2.  

2 MAIN RESULTS 

The following lemma is necessary to prove the 

main result, which is directly obtained from Bar-

bour et al. (1992). 

Lemma 2.1. Let U
N

 and U  denote a Poisson 

random variable with mean N  and  ,  respec-

tively. Then, for A + , the total variation distance 

between the distributions of U
N

 and U  satis-

fies the following inequality: 

 ( ) 2
, min 1, .d U U ETV NN e

  


  
 − 

  
  (0.4) 

The following theorems present non-uniform and 

uniform bounds for the distance between the distri-

bution functions of WN  and U , which are the 

expected results. 

2.1 A uniform bound on Poisson 

approximation for random sums of independent 

negative-binomial random variables 

Theorem 2.1. For  ,A +   
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Proof. Applying the result in Tran Loc Hung and 

Le Truong Giang (2016a), the following inequality 

is satisfied 
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( ) ( ) ( ) 11 1, min 1 1 ,1 .

1

n pr iind W U e r p p pTV n n i i i in pii


−− − − − − −

=
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From the triangular inequality, combining (1.4) and 

(1.6), it follows the fact that 
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This finishes the proof. 

Remark 2.1. The result of (1.5) is interesting be-

cause of considering ( ) 11

1

N
r p pN i i i

i

 −= −
=

 instead of 

( )1

1

N
r pN i i

i

 = −
=

 as in Teerapabolarn (2014). It is 

easily seen that the (1.1) is a special case of the 

(1.5) when N n=  +  is fixed. 

Corollary 2.1. For ... 11 2r r rn= = = = , then 
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Remark 2.2. The result (1.7) is a Poisson approx-

imation for the random sums of independent geo-

metric random variables, which is introduced in 

Teerapabolarn (2013a). 

2.2 A non-uniform bound on Poisson 

approximation for random sums of independent 

negative-binomial random variables 

Theorem 2.2. For 0w  + , we have
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Proof. Applying the corresponding results in Tran 

Loc Hung and Le Truong Giang (2016a) and 

Teerapabolarn (2013a) yields 
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Combining (1.9) and (1.10) gives 



Can Tho University Journal of Science   Vol. 54, No. 8 (2018): 149-153 

 152 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )
( )
( )

0 0 0 0
0

0 0 0 0
0

0 0
0

0 0

11 1
min ,1

100 1

2 2
min ,min 1,

10

P W w P U w P N n P W w P U wN n
n

P N n P W w P U w P U w P U wn n
n

P N n P W w P U wn n
n

P U w P U w
N

nn r pe pri i iiP N n pip w pn i in

n

i

w e

 

  



 










 −   =  − 
=


  =  −  +  −    

=


 =  − 

=

+  − 

  −− − 
 = −   

+  = =


+

+

( ) ( )
( )

( )
11 11 min ,1 1

101

2 2
min ,min 1, .

10

E N

N r p ri i iNE e p p pN ii ip wii

E N
w e

 




 



    
−   

    

  − − − − − −    +  = 

    
+ −  

+     

 

The proof is completed. 

Remark 2.3. It is easily to check that the (1.2) is a 

special case of the (1.8) when N n=  +  is fixed. 

Corollary 2.2. For ... 11 2r r rn= = = = , then 
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Remark 2.4. The result (1.11) is a non-uniform 

bound on Poisson approximation for the random 

sums of independent geometric random variables. 

3 CONCLUSIONS 

Bounds for the distance between the distribution 

function of random sums of independent negative-

binomial random variables and an appropriate 

Poisson distribution function were obtained. The 

results in this paper are extensions and generaliza-

tions of results in Teerapabolarn (2013a), and 

Teerapabolarn (2014), Tran Loc Hung and Le Tru-

ong Giang (2016a, 2016b). The results will be 

more interesting and valuable if Poisson approxi-

mation for random sums of dependent negative - 

binomial random variables is discussed.  
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