New bounds on poisson approximation for random sums of independent negativebinomial randomvariables

Le Truong Giang ${ }^{\text {* }}$ and Trinh Huu Nghiem ${ }^{2}$
${ }^{1}$ University of Finance - Marketing, Vietnam
${ }^{2}$ Nam Can Tho University, Vietnam
*Correspondence: Le Truong Giang (email: ltgiang@ufm.edu.vn)

Article info.

Received 11 Feb 2018
Revised 04 Jun 2018
Accepted 30 Nov 2018

Keywords

> Negative - binomial variable, Poisson approximation, random sums, total variation distance, uniform and nonuniform bound

Abstract

The aim of this paper is to establish new bounds on Poisson approximation for random sums of independent negative-binomial random variables. The bounds showed in current paper are a uniform bound and a non-uniform bound. The received results in this paper are extensions and generalizations of known results.

Cited as: Giang, L.T. and Nghiem, T.H., 2018. New bounds on poisson approximation for random sums of independent negative-binomial randomvariables. Can Tho University Journal of Science. 54(8): 149-153.

1 INTRODUCTION

In recent times, Poisson approximation problem for random sums of discrete random variables has attracted the attention of mathematicians. Several interesting results can be found in Yannaros (1991), Vellaisamy and Upadhye (2009), Kongudomthrap and Chaidee (2012), Teerapabolarn (2013a), Teerapabolarn (2014), Tran Loc Hung and Le Truong Giang (2014), Tran Loc Hung and Le Truong Giang (2016a, 2016b), and Le Truong Giang and Trinh Huu Nghiem (2017).

Let X_{1}, X_{2}, \ldots be a sequence of independent nega-tive-binomial random variables with probabilities

$$
P\left(X_{i}=k\right)=C_{r_{i}+k-1}^{k}\left(1-p_{i}\right)^{k} p_{i}^{r_{i}},
$$

where $p_{i} \in(0,1) ; r_{i}=1,2, \ldots ; i=1,2, \ldots ; k=0,1, \ldots$
Let $W_{n}=\sum_{i=1}^{n} X_{i}$ and $U_{\lambda_{n}}$ be a Poisson random variable with mean

$$
\lambda_{n}=E\left(W_{n}\right)=\sum_{i=1}^{n} r_{i}\left(1-p_{i}\right) p_{i}^{-1} .
$$

In addition, throughout this paper, $d_{T V}$ is denoted a probability distance of total variation, defined by

$$
d_{T V}(X, Y)=\sup _{A}|P(X \in A)-P(Y \in A)|,
$$

where $A \subseteq \mathbb{T}_{4}$.

A uniform bound and a non-uniform bound for the distance between the distribution functions of W_{n}
and $U_{\lambda_{n}}$ were presented in Tran Loc Hung and Le Truong Giang (2016a) as follows:

$$
\begin{equation*}
d_{T V}\left(W_{n}, U_{\lambda_{n}}\right) \leq \sum_{i=1}^{n} \min \left\{\lambda_{n}^{-1}\left(1-e^{-\lambda_{n}}\right) r_{i}\left(1-p_{i}\right) p_{i}^{-1}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}} \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P\left(W_{n} \leq w_{0}\right)-P\left(U_{\lambda_{n}} \leq w_{0}\right)\right| \leq \frac{e^{\lambda_{n}}-1}{\lambda_{n}} \sum_{i=1}^{n} \min \left\{\frac{r_{i}\left(1-p_{i}\right)}{\left(w_{0}+1\right) p_{i}}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}}, \tag{0.2}
\end{equation*}
$$

where $w_{0} \in \mathbb{Z}_{4}:=\{0,1,2, \ldots\}$.
Consider the $\operatorname{sum} W_{N}=\sum_{i=1}^{N} X_{i}$, where N is a nonnegative integer valued random variable and independent of the X_{i} 's. The sum is called random sums of independent negative -binomial random
variables. Let $U \bar{\lambda}$ be a Poisson random variable with $\quad \bar{\lambda}=E\left(\bar{\lambda}_{N}\right)$, where $\quad \bar{\lambda}_{N}=\sum_{i=1}^{N} r_{i}\left(1-p_{i}\right)$.
Teerapabolarn (2014) gave a uniform bound for the distance between the distribution functions of W_{N} and $U \bar{\lambda}$ as follows:

$$
\begin{align*}
& d_{T V}\left(W_{N}, U \bar{\lambda}\right) \leq \min \left\{1, \sqrt{\frac{2}{\bar{\lambda} e}}\right\} E\left|\bar{\lambda}_{N}-\bar{\lambda}\right| \\
&+\min \left\{E\left(\sum_{i=1}^{N} \frac{r_{i}\left(1-p_{i}\right)^{2}}{p_{i}}\right), E\left(\frac{\left.\left.\sum_{i=\frac{r_{i}\left(1-p_{i}\right)^{2}}{p_{i}}}^{\sqrt{2 \bar{\lambda}_{N^{e}}}}\right)\right\}}{}\right)\right. \tag{0.3}
\end{align*}
$$

In this paper, some of the bounds on Poisson approximation for random sums of independent nega-tive-binomial random variables with mean $\lambda=E\left(\lambda_{N}\right)$, where $\lambda_{N}=\sum_{i=1}^{N} r_{i}\left(1-p_{i}\right) p_{i}^{-1}$, are presented in Section 2.

2 MAIN RESULTS

The following lemma is necessary to prove the main result, which is directly obtained from Barbour et al. (1992).

Lemma 2.1. Let $U_{\lambda_{N}}$ and U_{λ} denote a Poisson random variable with mean λ_{N} and λ, respectively. Then, for $A \subseteq \mathbb{Z}_{4}$, the total variation distance
between the distributions of $U_{\lambda_{N}}$ and U_{λ} satisfies the following inequality:

$$
\begin{equation*}
d_{T V}\left(U_{\lambda_{N}}, U \lambda\right) \leq \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right| \tag{0.4}
\end{equation*}
$$

The following theorems present non-uniform and uniform bounds for the distance between the distribution functions of W_{N} and U_{λ}, which are the expected results.

2.1 A uniform bound on Poisson approximation for random sums of independent negative-binomial random variables

Theorem 2.1. For $A \subseteq \mathbb{T}_{4}$,

$$
\begin{align*}
d_{T V}\left(W_{N}, U_{\lambda}\right) \leq & E\left(\sum_{i=1}^{N} \min \left\{\frac{1-e^{-\lambda_{N}}}{\lambda_{N}} r_{i}\left(1-p_{i}\right) p_{i}^{-1}, 1-p_{i}^{r_{i}}\right\}\left(1-p_{i}\right) p_{i}^{-1}\right) \tag{0.5}\\
& +\min \left\{1, \sqrt{\frac{2}{\lambda e}}\right\} E\left|\lambda_{N}-\lambda\right|
\end{align*}
$$

Proof. Applying the result in Tran Loc Hung and Le Truong Giang (2016a), the following inequality is satisfied

$$
\begin{equation*}
d_{T V}\left(W_{n}, U_{\lambda_{n}}\right) \leq \sum_{i=1}^{n} \min \left\{\lambda_{n}^{-1}\left(1-e^{-\lambda_{n}}\right) r_{i}\left(1-p_{i}\right) p_{i}^{-1}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}} . \tag{0.6}
\end{equation*}
$$

From the triangular inequality, combining (1.4) and (1.6), it follows the fact that

$$
\begin{aligned}
& d_{T V}\left(W_{N}, U \lambda\right)=\sum_{n=1}^{\infty} P(N=n) d_{T V}\left(W_{n}, U_{\lambda}\right) \\
& \leq \sum_{n=1}^{\infty} P(N=n)\left[d_{T V}\left(W_{n}, U \lambda_{n}\right)+d_{T V}\left(U_{\lambda_{n}}, U_{\lambda}\right)\right] \\
& =\sum_{n=1}^{\infty} P(N=n) d_{T V}\left(W_{n}, U \lambda_{n}\right)+d_{T V}\left(U_{\lambda_{N}}, U_{\lambda}\right) \\
& \leq \sum_{n=1}^{\infty} P(N=n) \sum_{i=1}^{n} \min \left\{\frac{\left(1-e^{-\lambda_{n}}\right) r_{i}\left(1-p_{i}\right)}{\lambda_{n} p_{i}}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}} \\
& +\min \left\{1, \sqrt{\frac{2}{\lambda e}}\right\} E\left|\lambda_{N}-\lambda\right| \\
& \leq E\left(\sum_{i=1}^{N} \min \left\{\lambda_{N}^{-1}\left(1-e^{-\lambda_{N}}\right) r_{i}\left(1-p_{i}\right) p_{i}^{-1}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}}\right) \\
& +\min \left\{1, \sqrt{\frac{2}{\lambda e}}\right\} E\left|\lambda_{N}-\lambda\right| .
\end{aligned}
$$

This finishes the proof.

Remark 2.1. The result of (1.5) is interesting because of considering $\lambda_{N}=\sum_{i=1}^{N} r_{i}\left(1-p_{i}\right) p_{i}^{-1}$ instead of $\bar{\lambda}_{N}=\sum_{i=1}^{N} r_{i}\left(1-p_{i}\right)$ as in Teerapabolarn (2014). It is easily seen that the (1.1) is a special case of the (1.5) when $N=n \in \mathbb{Z}_{4}$ is fixed.

Corollary 2.1. For $\eta_{1}=r_{2}=\ldots=r_{n}=1$, then

$$
\begin{align*}
d_{T V}\left(w_{N}, U \lambda\right) \leq & E\left(\sum_{i=1}^{N} \min \left\{\left\{_{N}^{-1}\left(1-e^{-\lambda_{N}}\right) p_{i}^{-1},\right\}\left(1-p_{i}\right)^{2} p_{i}^{-1}\right)\right. \tag{0.7}\\
& +\min \left\{1, \sqrt{\frac{2}{\lambda}}\right\} E\left|\lambda_{N}-\lambda\right| .
\end{align*}
$$

Remark 2.2. The result (1.7) is a Poisson approximation for the random sums of independent geometric random variables, which is introduced in Teerapabolarn (2013a).

2.2 A non-uniform bound on Poisson approximation for random sums of independent negative-binomial random variables

Theorem 2.2. For $\quad w_{0} \in \mathbb{T}_{4}$, we have

$$
\begin{align*}
& \left|P\left(W_{N} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \leq \min \left\{\frac{2 \lambda}{w_{0}+1}, \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right|\right\} \\
& +E\left(\lambda_{N}{ }^{-1}\left(e^{\lambda_{N}}-1\right) \sum_{i=1}^{N} \min \left\{\frac{r_{i}\left(1-p_{i}\right)}{p_{i}\left(w_{0}+1\right)}, 1-p_{i}^{r_{i}}\right\}\left(1-p_{i}\right) p_{i}^{-1}\right) . \tag{0.8}
\end{align*}
$$

Proof. Applying the corresponding results in Tran
Loc Hung and Le Truong Giang (2016a) and
Teerapabolarn (2013a) yields

$$
\begin{equation*}
\left|P\left(W_{n} \leq w_{0}\right)-\sum_{k \leq w_{0}} \frac{\lambda_{n}^{k} e^{-\lambda_{n}}}{k!}\right| \leq \frac{e^{\lambda_{n}}-1}{\lambda_{n}} \sum_{i=1}^{n} \min \left\{\frac{r_{i}\left(1-p_{i}\right)}{p_{i}\left(w_{0}+1\right)}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}} \tag{0.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P\left(U_{\lambda_{N}} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \leq \min \left\{\frac{2 \lambda}{w_{0}+1}, \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right|\right\} . \tag{0.10}
\end{equation*}
$$

Combining (1.9) and (1.10) gives

$$
\begin{aligned}
& \left|P\left(W_{N} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \leq \sum_{n=0}^{\infty} P(N=n)\left|P\left(W_{n} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \\
& \leq \sum_{n=0}^{\infty} P(N=n)\left[\left|P\left(W_{n} \leq w_{0}\right)-P\left(U_{\lambda_{n}} \leq w_{0}\right)\right|+\left|P\left(U_{\lambda_{n}} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right|\right] \\
& \leq \sum_{n=0}^{\infty} P(N=n)\left|P\left(W_{n} \leq w_{0}\right)-P\left(U_{\lambda_{n}} \leq w_{0}\right)\right| \\
& +\left|P\left(U_{\lambda_{N}} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \\
& \leq \sum_{n=0}^{\infty} P(N=n) \frac{e^{\lambda_{n}}-1}{\lambda_{n}} \sum_{i=1}^{n} \min \left\{\frac{r_{i}\left(1-p_{i}\right)}{p_{i}\left(w_{0}+1\right)}, 1-p_{i}^{r_{i}}\right\} \frac{1-p_{i}}{p_{i}} \\
& +\min \left\{\frac{2 \lambda}{w_{0}+1}, \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right|\right\} \\
& \leq E\left\{\lambda_{N}-1\left(e^{\lambda} N-1\right) \sum_{i=1}^{N} \min \left\{\frac{r_{i}\left(1-p_{i}\right)}{p_{i}\left(w_{0}+1\right)}, 1-p_{i}^{r_{i}}\right\}\left(1-p_{i}\right) p_{i}^{-1}\right) \\
& +\min \left\{\frac{2 \lambda}{w_{0}+1}, \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right|\right\} .
\end{aligned}
$$

The proof is completed.
Corollary 2.2. For $\eta=r_{2}=\ldots=r_{n}=1$, then
Remark 2.3. It is easily to check that the (1.2) is a special case of the (1.8) when $N=n \in \mathbb{Z}_{4}$ is fixed.

$$
\begin{align*}
\left|P\left(W_{N} \leq w_{0}\right)-P\left(U_{\lambda} \leq w_{0}\right)\right| \leq \min \left\{\frac{2 \lambda}{w_{0}+1}\right. & \left., \min \left\{1, \sqrt{\frac{2}{e \lambda}}\right\} E\left|\lambda_{N}-\lambda\right|\right\} \\
& +E\left(\lambda_{N}-1\left(e^{\lambda_{N}-1}\right) \sum_{i=1}^{N} \min \left\{\frac{1}{p_{i}\left(w_{0}+1\right)}, 1\right\} \frac{\left(1-p_{i}\right)^{2}}{p_{i}}\right) \tag{0.11}
\end{align*}
$$

Remark 2.4. The result (1.11) is a non-uniform bound on Poisson approximation for the random sums of independent geometric random variables.

3 CONCLUSIONS

Bounds for the distance between the distribution function of random sums of independent negativebinomial random variables and an appropriate Poisson distribution function were obtained. The results in this paper are extensions and generalizations of results in Teerapabolarn (2013a), and Teerapabolarn (2014), Tran Loc Hung and Le Truong Giang (2016a, 2016b). The results will be more interesting and valuable if Poisson approximation for random sums of dependent negative binomial random variables is discussed.

REFERENCES

Barbour, A. D., Holst, L. and Janson, S., 1992. Poisson Approximation, Clarendon Press-Oxford, 277.
Kongudomthrap, S. and Chaidee, N., 2012. Bounds in Poisson approximation of random sums of Bernoulli
random variables. Journal of Mathematics Research. 4(3): 29-35.
Le Truong Giang and Trinh Huu Nghiem, 2017. Characteristic functions method for some of the limit theorems in probability. Can Tho University Journal of Science. 53: 88-95.
Teerapabolarn, K., 2013a. Improved bounds on Poisson approximation for independent binomial random summands. International Journal of Pure and Applied Mathematics. 89(1): 29-33.
Teerapabolarn, K., 2013b. Poisson approximation for random sums of geometric random variables. International Journal of Pure and Applied Mathematics. 89(1): 35-39.
Teerapabolarn, K., 2014. Poisson approximation for random sums of independent negative binomial random variables. International Journal of Pure and Applied Mathematics. 93(6): 783-787.
Tran Loc Hung and Le Truong Giang, 2014. On bounds in Poisson approximation for integer-valued independent random variables. Journal of Inequalities and Applications, https://doi.org/10.1186/1029-242X-2014-291.

Tran Loc Hung and Le Truong Giang, 2016a. On bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables. SpringerPlus, https://doi.org/10.1186/s40064-016-1710-y.
Tran Loc Hung and Le Truong Giang, 2016b. On the bounds in Poisson approximation for independent geometric distributed random variables. Bulletin of the Irannian Mathematical Society. 42(5): 1087-1096.

Vellaisamy, P. and Upadhye, S., 2009. Compound negative binomial approximations for sums of random variables. Probability and Mathematical Statistics, 29(2): 205-226.
Yannaros, N., 1991. Poisson approximation for random sums of Bernoulli random variables. Statistics \& Probability Letters. 11(2): 161-165.

